
MANIPULATOR CONTROL 2

161



N90- 29 891

Requirements for Implementing Real-Time Control Functional Modules

on a Hierarchical Parallel Pipelined System

Thomas E. Wheatley, John L. Michaloski and Ronald Lumia
National Institute of Standards and Technology

Bldg. 220 Rm. B124
Gaithersburg, MD 20899

February 1989

Abstract
Analysis of a robot control system leads to a broad range of processing requirements. One fundamental

requirement of a robot control system is the necessity of a multicomputer system in order to provide

sufficient processing capability. The use of multiple processors in a parallel architecture is beneficial for a

number of reasons, including better cost performance, modular growth, increased reliability through

replication, and flexibility for testing alternate control strategies via different partitioning [GAG86,

NAR86]. A parallel architecture mandates three additional requirements not found in a sequential

architecture. First, the problem must be partitioned into tasks. Hierarchical structuring will be used to

partition a robot controller, with each level in the hierarchy corresponding to a separate task. Each task level
is further modeled as a virtual control loop. Second, each task must be scheduled for execution on one or

more processors. The problem of scheduling processes to processors will highlight the importance of the

programming environment. Third, synchronization of control and data flow (communication) must be

performed during execution. A survey of the progression from low-level control synchronizing primitives to

higher level communication tools will be presented. The system communication and control mechanisms of

existing robot control systems will be compared to the hierarchical control model. The impact of this design

methodology on the current robot control systems at NIST will be explored.

1.0 Partitioning Requirement
The partitioning of a job into cooperating processes is called multitasking or multithreading. The

effectiveness of a parallel implementation depends on the inherent parallelism of the algorithms and the

overhead of interprocessor communication. Algorithms that are purely sequential will not run faster on a

parallel machine. To achieve the benefits of parallelism, the cost of communications between processors must
not exceed the time savings obtained by parallel execution on the different processors. Job partitioning is

usually discussed in the context of a fine-grain versus coarse-grain approach [KRU87, LYO87, LYO86]. An

entire process which is allocated one processor for the life of its execution could be considered coarse-grain.

Solutions to many problems are too complex to be calculated within an appropriate time frame with a simple

coarse-grain sequential execution and may require a fine-grained processing approach.

Parallel machines exhibit different system capabilities. General-purpose coarse-grain machines tend to

maximize batch throughput. Supercomputers tend to specialize in fine-grained number crunching in parallel

for compute-bound operations. Other fine-grain computers specialize in data-intensive operations. The variety

in machine capabilities leads to the distinction between systems that maximize the throughput of many jobs,

known as throughput-oriented multiprocessors, and systems that maximize the execution of one process,

known as speedup-oriented multiprocessors [DUB88].

This paper will focus on those parallel architectures that best fit the system requirements of an

intelligent robot controller in terms of price versus performance. A robot controller is a large system that

is composed of layers of fine-to-coarse-grained processes and can be characterized as a speedup-oriented

multiprocessing application. Hierarchical structuring offers an easy and systematic parallel approach to

partitioning. With a hierarchical control system, levels in the hierarchy can be developed as sequential

processes, and then parallel integration can be modeled as communicating sequential processes [HOA78].
Thus, a control system can be developed functionally independent of the implementation and then

hierarchically integrated with the communicating sequential processes model. Two design factors are at the

163

Cfir _ .=j



heart of exploiting the benefits of a hierarchical control system. The notions of "task decomposition" and

"response time" are crucial in determining the number of processors in a hierarchical system, the complexity

contained within any one level, and how communication should be performed.

Task decomposition can be defined as the process of recursively breaking down a task into smaller, more

manageable tasks, until some atomic level of activity is reached. At each level in the hierarchical breakdown,
an interface exists where the adjoining levels exchange information. The higher level communicates a

command to its neighboring lower level. Likewise, the lower level command communicates a status to its

neighboring upper level. This communication protocol is analogous in sequential programming to a subroutine

invocation as a command and a return value as a status. Defining a hierarchical decomposition for a robot

control system starts with a high level task, and through a series of task decompositions, reduces this task to

a set of motion primitives. Concurrently, status of the environment filters up the hierarchy to provide

feedback to the task decomposition.

Unlike sequential hierarchical decomposition, each lower level in a parallel pipelined architecture is not

completely dependent on its neighboring upper level. Although levels may share some data that models the

world, each level can be considered to run independently of any other, responding to a command and supplying
a status much like a plant in a normal feedback control system. When composed as a system, hierarchical

control is built as layers of virtual control loops. When executing, each virtual control layer in the hierarchy

can be considered as part of a long chain def'ming the hierarchical state, yet each level's action is based on its

own control flow. The virtual control loop software exhibits cyclic feedback behavior that samples inputs

including command and status and guarantees some output within a given time.

Performing task decomposition is a function of both the state of the world and the number of

operations that must be performed. Determining the amount of work a task must perform is a subjective issue

but depends heavily on the amount of time required to make a decision. Responding to an event too late
nullifies the control no matter how intelligent the subsequent action. This timing restriction leads to the

definition of response time as the maximum allowable time duration between an event and an action resulting
from that event.

Meeting a response time restriction may limit the amount of intelligent behavior at any one level. By

dividing task decomposition into planners and executors, one can maintain real-time control yet concurrently

evaluate alternative future actions. The planner is responsible for generating a plan consisting of a series of
actions. An executor is responsible for stepping through a generated plan. The executor matches the current

state of the machine against a set of preconditions, which triggers the corresponding action.

The planner and executor together compose the task decomposition module that determines the control

behavior. But there are more functions to feedback control than just planning and executing. Supplying and

interpreting external sensor information is another important function in feedback control. Sensor processing

operates concurrently with the control function to interface to the real world. Sensor processing consists of

data acquisition, filtering, enhancement, and other functions up to and including object recognition.

The disparity of purpose between control and sensing makes it useful to mediate the information

exchanged between the control and sensing functions. The mediating function, defined as the world model

[ALB81], allows the decision process to become more abstract in its nature of queries about the world, and
less dependent on the physical nature of the actual sensors being used. The world model provides the

system's best estimate and evaluation of the history, current state, and possible future states of the world.

The world model provides accurate and current information for reflexive behavior (i.e. what is), the best

estimate of the world in deciding the future plans (i.e. what if), and integrates the information from the

sensor processing module. This leads to a partitioning of the system into hierarchical levels of virtual control

loops, each of which consists of a control, a sensing, and a world modeling component. Figure 1 illustrates

the partitioning of one level within the hierarchy.

SENSOR _ WORLDPROCESSING MODEL

PLANNER

EXECUTOR

Figure 1. Control Level Partitioning

164



Furtherrefiningandpartitioning of a control level is possible but is beyond the scope of this paper.

Albus more thoroughly covers the decomposition and partitioning of a hierarchical control system [ALB87].

2.0 Programming Environment and Scheduling Requirements
A traditional real-time software development environment supports the development and testing of

algorithms for logical correctness on a "slower" host machine, with later execution of these logically correct

algorithms on a "faster" target system, to allow testing under real conditions. The goal of the host system is

to offer as many development tools as possible. Target systems are used to meet the requirements of real-

time response which implies a premium on efficiency. Assigning processes to processors is a major concern in
multiple processor systems. The process of mapping processes to processors and scheduling tasks within these

processes is iterative. Should the granularity chosen not realize the desired speed, additional processors may

be required, or revision of the algorithm on the host system for subsequent use on the target system may be

required. Because of this iterative nature, understanding the requirements of an efficient and robust

programming environment will lead to an increase in software productivity.

2.1 Real-Time Target System Software
High data bandwidth, maximized throughput, and fast execution are desirable features of a real-time

control system. To achieve this, target systems exhibit a tighter coupling between system support and the

control algorithms. Sometimes, the operating systems of target systems are by design as primitive as possible

so as to remove any unnecessary overhead [NAR86]. Efficient software performance for real-time systems
has been determined to require several features including : 1) fast context switching time between tasks, 2)

small interrupt latency, 3) feature priority scheduling, 4) allowing high-priority tasks to instantly pre-empt
lower priority tasks, 5) methods for synchronization of tasks, and 6) granting low-priority tasks non-

preemptable status.
Although speed is important in a real-time control system, reliability and deterministic behavior are

the ultimate system measures that cannot be sacrificed at the expense of optimizing performance. Based on
the deterministic criteria, a real-time system has a set of processing requirements that are different from a

general purpose operating system. For instance, fairness is not an issue in real-time control. Either the
processes are permanently dedicated to the hardware or are guaranteed resident during critical sections (i.e.

non-preemptable). Another area affecting the deterministic behavior of the real-time model is processor

scheduling. Time-sliced and round-robin scheduling algorithms result in nondeterministic performance and

imply difficulty in verification. Exact time quantum round-robin scheduling can overcome the non-
determinism, but the overhead of continual context switching overrides the use of the round-robin method

except in very low speed applications. Instead, a priority-based system where processes execute in known
sequences and surrender the processor willingly results in predictable, hence deterministic, behavior.

2.2 Host System Support Software
General purpose computer operating systems provide a robust set of programming tools, such as a

wide variety of compilers, editors, source code control tools, and many tools ideally suited for software

development. General purpose, multi-user computers are not useful as target systems because of the

unpredictability of the underlying operating system. With so many responsibilities to handle concurrently,
large general purpose operating systems are not generally designed to include features required for running in

real-time. Therefore, these are separated and an efficient communication link (such as a local area network)

from the real-time target system to the host development system is not stricdy required but greatly

improves system flexibility.

2.3 Analysis of System Software Requirements
The programming environment for a hierarchical real-time control system is comprised of both host and

target system needs. The necessity to divide the software system into two components is based on the need to
meet timing requirements. The distinction between the two components becomes hazy as one moves up the

hierarchy until eventually the distinction disappears.

At the very lowest levels, the functional components must be efficient and highly streamlined since

parts of the control system may have to run without the luxury of any operating system assistance. A low-

level servo controller cannot afford the time to allow multi-tasking or other system overhead. A kernel

which handles spurious interrupts, limited background I/O service, and a basic monitor for off-line board

165



level troubleshootingis sufficientfor streamlined system support. However, stand-alone levels still require

interprocessor communication to other levels in the hierarchy.
Higher levels are allowed longer processing intervals so that context switching using multi-tasking

among different processes can be performed. Further, higher levels may require a high-speed file system for

data logging and performance analysis that can be used as an evaluation tool or as a postmortem data recorder

box (or "black box") after an unforeseen crash of the system.

This review of system requirements leads to the observation that a computing system with a rich set of

software tools is necessary to handle the broad variety of processing needs ranging from the real-time

hierarchy to supporting the user interface. A prototype architecture for such a system would exhibit differing

degrees of concurrency that then can be implemented as a blend of multiple processors and interleaved
execution on a single processor. Because of the disparity of response times required at various levels in the

hierarchy, different levels of granularity are required. At the lowest levels, planning may be impossible, and

even execution may require multiple processors to achieve a solution. Moving higher in the hierarchy, timing

constraints prevent the planner and executor from residing on the same processor. In this case, the two

processors would run in parallel, and asynchronously the planner would update plans. At higher levels,

completion time for plans is less critical so that multitasking on a single processor can supply enough

processing power for both the planner and executor. If the timing constraints are not stringent, multiple
levels can be combined onto one processor, or the use of a LAN can be used to connect other computers as a

part of the controller. Each of these configurations is based on the response time requirement of the level.

Figure 2 provides a guideline for the type of performance required of differing levels in the hierarchy. This is

based on the premise of allocating a nominally fixed percentage of response time devoted to communications

versus computation for each level of the hierarchy. The actual times chosen are relative, and will differ

according to one's choice of hardware and operating system support. This percentage of time concept and the

problem of timing analysis for a hierarchical control system is more thoroughly treated in [MIC88].

Figure 2. Computing Resource Utilization Based on Cycle Response Time

3.0 Synchronization and Communication

Synchronization is a basic building block that a multiprocessor system must contain. Synchronization
serves the dual purpose of enforcing the correct sequencing of processes and ensuring the mutually exclusive

access to certain shared, writable data. Synchronization is usually supported by some special-purpose

hardware. These basic synchronization primitives are then used to build higher level synchronization and
communication tools in software or microcode. Communication and synchronization are difficult to separate

because communication primitives can be used to implement synchronization protocols and vice versa. In

general, communication can be defined as transferring or exchanging information between processes, whereas
synchronization is a special form of communication in which the data is control information.

3.1 Synchronization
Synchronization provides mechanisms for coordinating control flow and data flow between multiple

processes. Synchronization tools evolve from basic hardware primitives to complex software and microcode

schemes. Parallel machines include hardware primitives capable of enforcing mutual exclusion on a resource.

Semaphores and message passing are software extensions built upon these primitives. For control flow,

parallel processes are synchronized to wait until all processes are ready. For data flow, synchronization

limits access to a shared resource to one process at a time. This section will cover synchronization of control

flow, while the following section on communication will cover synchronization of data flow.

At the user programming level, control synchronization between the master routine and the slave

166



subroutine in sequential processing is guaranteed because the master waits until the slave is done before

resuming execution. In concurrent machines, the master could continue processing or wait for a rendezvous at

a later point in time. In parallel programming, the concept of coroutines appear as a more fundamental

synchronization structure than subroutines, which can be regarded as a special case [HOA78]. Synchronization

in a parallel machine must handle the problem of parallel processes finishing at different times, waiting for

all to complete (synchronizing), and then continuing.

Synchronization schemes are based on some indivisible hardware action limited to only one process at a

time. For example, a basic semaphore consisting of a test-and-set can be used to mediate requests. These

primitive operations are subsequently used as the building blocks for higher level multiprocessing

synchronization mechanisms such as monitors, semaphores, single-writer�multiple-read blocks, master/slave
and critical sections. Priority-level access is a further enhancement of synchronization. A barrier

synchronization function is a software or microcoded synchronization tool placed so that processes arriving
at the" barrier must wait until all pertinent processes arrive. Processes either busy-wait or block until the

barrier is lifted. Global broadcast synchronization uses some signal to establish the beginning of a time

period in which all processes across all boards in the system are allowed to write to their common memory

buffers [ALB81]. Global broadcast synchronization is best suited where the standard deviation between cycles

is small so that updates can occur at a known intervals with little processing time wasted.

3.2 Communication

Interprocessor communication can be characterized as a read-write sequence with two additional facets,

synchronization for the exchange of information and destructive/non-destructive read/write execution. For
example, writing to a queue is non-destructive (assuming enough storage), while removing it is destructive.

Writing to a variable is destructive,while reading it is non-destructive. Figure 3 summarizes the combinations

of non-destructive and destructive execution during communication and the styles of communication that

Destructive Read

Non-destructive Read

result.

Destructive Write Non-Destructive Write

non-queued queued message-
message passin_ passin_

variables, mall (assumes explicit
shared memory deletemeehanism)

Figure 3. Styles of Communication

The execution may also have a time-out feature, so that the process does not wait indefinitely for new

information. The information exchange can be synchronous or asynchronous. The following sections more

closely explore the methodologies and rationale of different communication techniques.

3.2.1 Evaluating Communication
To evaluate the effectiveness of interprocessor communication, the performance measures of latency and

throughput are used. To characterize a robot control system as real-time implies a guaranteed maximum

latency for interproeessor communication. Latency is defined as the elapsed time before a message is
acknowledged. Throughput is defined as the number of bytes one process can send to another process in one

second, especially important for systems that share large amounts of data. However, 20 bytes of information

with a 20 msec update rate cannot be handled with a communication protocol that is efficient for moving

large amounts of data but which requires a 100 msec setup time.

Additionally, the concepts of flexibility, data integrity, and extensibility are as equally important in

evaluating a communication scheme but are more intangible. Data integrity and flexibility can best be

explained with an example. On sequential machines, interprocess communication is performed by calling or

invoking a subroutine and passing the appropriate parameters on the stack by value or by sharing global
variables. How the parameters are exchanged controls the method of communication. Passing parameters "by

value" places a copy of the parameter onto the stack and can be considered message passing since each processes'

internal variables are independent of the other processes. Passing parameters "by reference" pushes a pointer or

address onto the stack so that data is shared between the processes. In a uniprocessing architecture, passing

parameters "by reference" saves excessive copying. However, in parallel processing such copying is more

167



flexiblesince a user cannot be assured that the two processes both have access to the pointers or addresses, and

that the addresses are valid (in a dual ported memory scheme, on-board versus off-board addresses differ).

However, complete copying is slower and this highlights the fact that a robot control system must address

the issues of flexibility and data integrity in conjunction with performance measures. This coupling of

evaluation leads to numerous communication design alternatives aimed at meeting different priorities.

3.2.2 Communication Designs
Different designs are available in order to perform real-time communication. Gauthier, et al provide an

in depth survey of the various interprocessor communication designs [GAU87]. Overall, communication

depends on the system architecture, either tightly or loosely coupled. Tightly coupled systems have a public

memory architecture, where processors communicate through shared memory. Loosely coupled systems have

private memories where processors generally cannot read each others memory and must have an explicit

message-passing communication channel.

Message passing systems have memory attached privately to each processor (at least conceptually), so

that processors communicate only through explicit transmissions of whole messages [LYO87]. Message

passing is more generic in that messages can be passed not only across backplanes but across machines.
Message passing is typically slower, as it is generally implemented at the subroutine level and requires

coordination at the receiving end.

Shared memory is a special form of message passing, that provides equal access to all processors. Shared-

memory offers many advantages, including ease of sharing data, rapid communication, and high performance.

The advantages that make shared-memory architectures attractive result from the tight coupling along the
critical path between processors and memory. This leads to a notable increase in performance. Shared memory

offers such a highly efficient and straightforward method for communicating among parallel processes that it

is commonly used for parts of real-time systems [PAU86, KOR86, KAZ87]. Assuming a shared memory

communication scheme, the disadvantages that arise are: 1) guaranteeing mutual exclusion of shared resources

across processors and 2) maintaining a consistent view of addressing across processors. Another major

disadvantage of shared memory is that as the number of processors grow, the arbitration of accesses to the

common memory burdens the system and degrades performance. The use of multiple communication links can
ease this but increases the problem of internal versus external addressing for common memory mapping.

3.2.3 Communication Synchronization : Asynchronous vs Synchronous
In general, communication mechanisms can be characterized as either synchronous (blocking) or

asynchronous (non-blocking). Routinely, blocking implies surrendering the processor and waiting for some
condition to occur before continuing execution. Whether to block provides the fundamental distinction

between a synchronous "lock-step" communication exchange and an asynchronous "free-wheeling"
communication exchange. Synchronous communication uses an explicit handshake for acknowledgment. In an

asynchronous communication protocol, the sending process does not have to wait or block for the receiving
process to acknowledge receipt of the message. Since asynchronous messages can arrive at random times,

queues are attached to save messages. Acknowledgment is optional, but can be installed as part of the
mechanism. The message itself must contain instructions whether an acknowledgment is necessary.

One advantage of synchronous communication is simplicity (no queues or queuing monitor) and thus

low overhead. Another advantage is the savings in space and time that result because data can be directly

copied from the sending processes' buffer to the receivers with no intermediate storage action required.

Finally, the one-to-one correspondence of a synchronous transmission provides a stricter notion of

accountability and determinism that enhances software reliability. The major disadvantage of synchronous
communication is the time spent synchronizing and acknowledging, i.e. waiting, for each communication.

Another disadvantage is the lack of flexibility and subsequent extra software penalty for handling dynamic

reconfigurations such as many-to-one communication channels. For example, in a dynamic environment, a

synchronous communication exchange requires a priori knowledge by both parties of the other's existence in

order to synchronize.
The advantages of asynchronous communication are speed and flexibility. The lack of synchronization

and acknowledgment steps improves performance. The disadvantage is that error detection may be overlooked.

Flexibility results in that the message may embody more of the communication mechanism, i.e. destination of

an acknowledgment. With information embedded in the message rather than the a priori synchronous

168



connection,a newclientcanbedynamicallyaddedto a serverby includinga destinationaddresswithinthe
message.Thedisadvantagesof asynchronouscommunicationis the lackof accountabilityfor errorswhich
requiresprogrammerdisciplinetoforeseeandhandleerrors.

Thesetwo modelsare basicallyequivalentin that the synchronization(i.e. controlinformation
exchange)beforethecommunicationcanbeconsidereda bi-directionalasynchronouscommunication.Further,
asynchronouscommunicationis usuallyextendedto includeanacknowledgmentstep.In addition,synchronous
communicationcanusea tablelookupfor dynamicreconfiguration.Froma softwarevalidationstandpoint,
synchronouscommunicationis preferred,but thesystemmaynot toleratetheextraamountof overhead.In
general,for connectionsthat are staticallypredef'medone-to-oneexchanges,synchronouscommunication
providesthemostreliablescheme.For connectionsmappedasmany-to-oneanddynamicallyreconfigurable,
asynchronouscommunicationprovidesthecleanerimplementation.

3.2.4Communication Duration : Connection Ties
Communication connection ties can be either temporary (datagrams), or permanent (virtual circuits)

[POS80]. The communication ties can be established dynamically through a system broadcast [FRI86] or by

statically defined connections [NAR86]. A dynamic connection is established by the sending process
broadcasting a system-wide request for the receiver location, who responds in turn with its location.

Communication is then direct. Dynamic connections offer flexibility, but should be done upon system start-

up for permanent communication links. Dynamic connection for temporary links would not be useful for a

system with stringent real-time control demands. Static connections use tables to link sending and receiving

processes. Static connections are fast, but may require the overhead of some centralized server.

4.0 Analysis of Design Alternatives
Given the rich set of communication design strategies, some general heuristics assist in focusing the

communication design. A survey of existing multiple processor robot control systems reveals a wide range of

implementations. The requirement to satisfy real-time constraints has lead to numerous implementations

using tightly coupled architectures with several processor boards on a common bus [PAU86, NAR86,
KOR86, KAZ87, GAU87, SCH87]. The target operating system of these implementations vary in degree of

system complexity from the basic use of interrupts and handshaking operations to handle interprocessor
communication[PAU86], to a limited operating system with special communication features [NAR86], to an

extended real-time operating system [SCH85].
These implementations share common system architectural characteristics with a hierarchical control

system. Although few of these control systems are directly labeled as hierarchical, most systems have at
least a two-level hierarchy with a low-level, real-time subsystem handling real-time motion control and a

slower high-level subsystem responsible for planning. This basic hierarchical decomposition in each of these

applications can be generalized into two virtual control loops exchanging commands and status. Implicitly,

these applications have additional levels within the hierarchy, but these levels do not directly correspond to a

virtual control loop implementation because of the concept that returning status is implicit in a serial

execution of the processes. These implicit levels could be partitioned into separate concurrent processes that

communicate through established interfaces rather than serial routines that communicate via subroutine calls.

Further, with concurrent operation, the concept of sampling the return status rather than just receiving a final

status embodies the feedback nature of a virtual control loop.
The concurrent hierarchical model of a robot control system containing virtual control loops has been

implemented with a purely executor style of task decomposition for a robot control system at the National

Institute of Standards and Technology [BAR82]. The flow of control was based on state-table transitions.

Where planning was appropriate, static plan definitions were used. The system offered several benefits. First,

the system was sensory-interactive and adapted to perturbations in the environment in real-time even though

the world model was limited to basic feature recognition. Second, hierarchical decomposition created well-

defined interfaces that allowed substitution of different implementations of a level without major impact on

the higher or lower levels that lead to proposed interface standards [FITZ85]. Finally, the system was able
to execute in real-time and supply robot updates within a fLxed interval on the order of milliseconds.

Table 1 summarizes some of the advantages and disadvantages of the previously discussed

communication features. Double lines separate independent communication features, from which one of the
alternative designs must be chosen. Sections between the single lines demarcate the selections for each feature.

169



Although one of the communication features must be chosen for a given level, it generally does not constrict
one to that choice for the entire system. Indeed, a very flexible system would incorporate some of each of

these using the response time criteria as an initial guide to the selection.

Issue Feature ADVANTAGES DISADVANTAGES

Tightly Coupled high-speed, Rarely portable, interconnect limits,
Shared Memory simple contention problems

Coupling
Slower, limited data bandwidthl_x_oselyCoupled/

Message Passing
Flexible, generic
better security,
cheaper for larger number
of processors

Synchronous Comm. Simple, guaranteed comm. Slow, requires time-out

Synchronization
Asynchronous Comm. Flexible, fast Overhead - queuing

Temporary Channel multiplex resources repeated overhead
Duration

Permanent Channel low overhead 1:1 communication best

Dynamic connectivity flexible, reconfigurable slower, larger overhead,
special hardware

Connectivity Smile connectivity simple, fast centralized server necessary

Centralized connectivity better accountability extra decode overhead each message

Decentralized connectivity nnbnndled, demon model slower, resource intensive

Table 1. Communication Feature Summary

The algorithmic view of data shared between processes also affects the communication interfaces. The

most straightforward algorithm is double buffering using shared memory where only one reader and one

writer grab complete control of the common memory until finished. A more complicated algorithm (n
readers, one writer ) allows several readers access to the memory at once, but only one writer at a time. For

an example of an n-readers, 1-writer algorithm, consider the case were two levels in the hierarchy are

communicating command and status to each other. Not only could one level read a command, but a diagnostic

process and a data performance logger could also sample the command buffer with minimal overhead.
The client/server model is a widely used communication protocol. This method fits into a message

passing type of interface. The server offers a level of abstraction from the user (i.e. the client) who queries
the server. The server hides the client from the physical implementation details and allows the level of

discourse to be of a logical and abstract nature. The client/server offers the strongest rationale for using a

message passing scheme (even if it is simply a subroutine call). Within the control hierarchy, the world

model acts as a server to its clients, the planner and the executor. Clients request service from the world

model. If the world model is busy, this request is queued. When ready, a client is serviced by the world

model. The world model translates all logical queries concerning the system into a corresponding physical

representation and responds with an answer. Thus, the world model shields its clients from understanding its

physical representation of the world.

Given these two communication interfaces, a general rule applies :

When one process has knowledge of the data structure used by the other processes, then access is

direct. If the processes use different data structures or one views the data logically while the other

handles physical implementation, a server is necessary in order to communicate information.

170 ¸



Theamountof dammovedbetweenprocessesis anotherfactorin thedesign.Movinglarge amounts of

data or shifting processes to and from private processor memories can be cumbersome and slow. A shared

memory scheme is more appropriate here since attempting to use a message passing technique as a server to
mediate shared data can be much slower, by a factor of thirty, than direct access [KAZ87]. Thus, if the data

structure is conceptually consistent across processors, shared memory improves performance.

5.0 Conclusion

This paper has addressed some design issues associated with developing a hierarchical control system for

an intelligent machine composed of a broad set of functional requirements. This set of requirements is too

large to handle in a conventional sequential programming environment because of the stringent timing

constraint imposed on performance. The use of a hierarchical structuring of modules for a control system

creates levels that operate in parallel and can be characterized as virtual control loops. Virtual control loops
use software to emulate a feedback control loop by sampling as inputs the command from a neighboring upper

level, comparing the input to the sensory sampled environment, computing a goal-directed action, and

outputting this action to the neighboring lower level, all within a fixed response time. Mapping this
hierarchical control system onto a parallel pipelined computing system is a reasonable method of

implementation. It offers flexibility and reliability at a reasonable cost. Work has begun on the design and

implementation of a concurrent hierarchical control system that includes planning, extensive world modeling,

and high level sensory processing. This system will use many of the aforementioned communication features

in a hybrid approach. The concept of the response time dictating the choice of communication schemes (based

on a percentage of the response time devoted to communication) will be further explored as a possible aid to

limit the iterative process of allocating processes to processors. By using a systematic ordering by time of the
various communication primitives available, one can quickly determine the type of system support appropriate

for a level, given the response time of that level. The discussion is beyond the scope of this paper, and will be

the topic of future publications by the authors.

References
[ALB81] ALBUS, J.S., BARBERA, A.J., NAGEL, R.N., "Theory and Practice of Hierarchical Control",

Twenty-third lEEE Computer Society International Conference, 1981, pp.18-39.

[ALB87] ALBUS J.S., McCAIN H.G., AND LUMIA R., "NASA/NBS Standard Reference Model For Telero-

bot Control System Architecture (NASREM)", NBS Technical Note 1235, National Bureau of Standards,
Gaithersburg, Md., July 1987.

[BAR82] BARBERA, A.J., FITZGERALD, M.L., AND ALBUS, J.S., "Concepts for a Real-Time Sensory-In-

teractive Control System Architecture", Proceedings of the 14th Southeastern Symposium on System Theory,

April 1982.

[DUB88] DUBOIS, M., SCHEURICH, C. AND BRIGGS, F.A., "Synchronization, Coherence, and Event Or-

dering in Multiprocessors", IEEE Computer, Februrary 1988, pp. 9-21.

[FITZ85] FITZGERALD, M.L., BARBERA, A.J., "A Low-Level Control Interface for Robot Manipula-

tors", NBS-Navy NAV/SIM Workshop of Robots Standards, June 6-7, 1985.

[FRI86] FRIEDLANDER, C.B., AND WEDDE, H.F., "Distributed Processing Under the Dragon Slayer Oper-

ating System".

[GAG86] GAGLIANELLO, R.D., AND KATSEFF, H.P., "A Distributed Computing Environment for Robot-

ics", Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA,

April 1986, pp. 1890-1895.

[GAU87] GAUTHIER, D., FREEDMAN, P., CARAYANNIS, G., AND MALOWANY, A.S.,

"Interprocess Communication for Distributed Robotics", IEEE Journal of Robotics and Automation, Vol.

RA03, No. 6, Dec. 1987, pp. 493-504.

[HOA78] HOARE, C. R., "Communicating Sequential Processes", Communications of the ACM, Vol. 21, No.

8, August 1978, pp. 666-677.

171



[KAZ87] KAZANZIDES P., WASTI H., AND WOLOVICH W.A., "A Multiprocessor System for Real-

Time Robotic Control: Design and Applications", Proceedings of the IEEE International Conference on Robot-

ics and Automation, New York, NY, 1987, pp. 1903-1908.

[KOR86] KOREIN, J.U., MAIER, G.E., TAYLOR, R.H., AND DURFEE, L.F., "A Configurable System for

Automation Programming and Control", Proceedings of the IEEE International Conference on Robotics and

Automation, San Francisco, CA, April 1986, pp. 1871-1877.

[KRU87] KRUSKAL, C.P., SMITH C.H., "On the Notion of Granularity", National Bureau of Standards Re-

port, July 1987.

[LYO86] LYON, G., "Programming The Parallel Processor", Second Symposium on the Role of Language in
Problem Solving, Applied Physics Laboratory of Johns Hopkins University, April 2-4, 1986.

[LYO87] LYON, G., "On Parallel Processing Benchmarks", National Bureau of Standards Report, NBSIR 87-

3580, June 1987.

[MIC88] MICHALOSKI, J.L., WHEATLEY, T.E., AND LUMIA, R. "Exploiting Computational Parallel-

ism with a Hierarchical Robot Control System", to be published.

[NAR86] NARASIMHAN, S., SIEGEL, D., HOLLERBACH, J.M., BIGGERS, K., AND GERPHEIDE, G.,

"Implementation of Control Methodologies on the Computational Architecture of the Utah/MIT hand", Pro-

ceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA, April 1986,

pp. 1884-1889.

[PAU86] PAUL, R.P, AND ZHANG, H., "Design of a Robot Force/Motion Server", Proceedings of the IEEE

International Conference on Robotics and Automation, San Francisco, CA, April 1986, pp. 1878-1883.

[POS80] POSTEL, J., "Internetwork Protocol Approached", IEEE Transactions on Communications, Vol.

COM-28, Number 4, April 1980, pp. 604-611.

[SCH85] SCHWAN, K, BIHARI,T, WEIDE, B, AND TAULBEE, G., "GEM: Operating System Primitives

for Robots and Real-Time Control Systems", Proceedings of the IEEE International Conference on Robotics

and Automation, 1985, pp. 807-813.

[SCH87] SCHWAN, K, BIHARI,T, WEIDE, B, AND TAULBEE, G., "High-Performance Operating System

Primitives for Robotics and Real-Time Control Systems", ACM Transactions on Computer Systems, Vol. 5,

No. 3, August 1987, pp. 189-231.

172


